Abstract

The protein neuronatin is expressed in the nervous system of the fetus and neonate at a much higher level than in the adult. Its function is unknown. As a result of variable splicing, neuronatin mRNA exists in two forms, α and β. Wild type PC12 cells express neuronatin-α. We have isolated a PC12 variant, called 1.9, that retains many of the neuron-like properties of wild type PC12 cells, but it does not express neuronatin and it exhibits markedly increased sensitivity to the toxic effects of nigericin, rotenone and valinomycin. Pretreatment of the 1.9 cells with α-methyltyrosine, which inhibits dopamine synthesis, had little effect on the cells’ sensitivity to nigericin, rotenone or valinomycin indicating that dopamine-induced oxidative stress was not involved in the toxicity of these compounds. However, flattened cell subvariants of the 1.9 cells, which do not have any neuron-specific characteristics, did not exhibit increased sensitivity to nigericin indicating that some neuronal characteristic of the 1.9 cells contributed to the toxicity of nigericin. After the neuronatin-β gene was transfected into and expressed in the 1.9 cells, they regained wild type PC12 levels of resistance to nigericin, rotenone and valinomycin. These studies suggest that the function of neuronatin during development could be to protect developing cells from toxic insult occurring during that period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call