Abstract
Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These proteins, Fdx, FTR, and Trx, constitute a regulatory ensemble, the "Fdx/Trx system." The redox biology field has since grown beyond all expectations and now embraces a spectrum of processes throughout biology. Progress has been notable with plants that possess not only the plastid Fdx/Trx system, but also the earlier known NADP/Trx system in the cytosol, endoplasmic reticulum, and mitochondria. Plants contain at least 19 types of Trx (nine in chloroplasts). In this review, we focus on the structure and mechanism of action of members of the photosynthetic Fdx/Trx system and on biochemical processes linked to Trx. We also summarize recent evidence that extends the Fdx/Trx system to amyloplasts-heterotrophic plastids functional in the biosynthesis of starch and other cell components. The review highlights the plant as a model system to uncover principles of redox biology that apply to other organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.