Abstract

A Fermat point P is one that minimizes the sum δ of the distances between P and the points of a given set. The resulting arrangement, called here a Fermat star, is a particular Steiner tree with only one intermediate point. We extend these concepts to rooted binary trees under the known rotation distance that measures the difference in shape of such trees. Minimizing δ is hard, due to the intrinsic difficulty of computing the rotation distance. Then we limit our study to establishing significant upper bounds for δ. In particular, for m binary trees of n vertices, we show how to construct efficiently a Fermat star with δ ⩽ m n − 3 m , with a technique inherited from the studies on rotation distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.