Abstract

Abnormal hedonic behavior is a key feature of many psychiatric disorders. Several paradigms measure reward-seeking behavior in rodents, but each has limitations. We describe a novel approach for monitoring reward-seeking behavior in rodents: sniffing of estrus female urine by male mice, along with number of ultrasonic vocalizations (USVs) emitted during the test. The female urine sniffing test (FUST) was designed to monitor reward-seeking activity in rodents together with tests of helplessness and sweet solution preference. USVs and dopamine release from the nucleus accumbens (NAc) were recorded. Sniffing activity was measured in 1) manipulation-naive C57BL/6J and 129S1/SVImJ mice and Wistar-Kyoto rats; 2) stressed mice; 3) two groups of mice that underwent the learned helplessness paradigm-one untreated, and one treated with the SSRI citalopram; and 4) GluR6 knockout mice, known to display lithium-responsive, mania-related behaviors. Males from all three strains spent significantly longer sniffing female urine than sniffing water. Males emitted USVs and showed significantly elevated NAc dopamine levels while sniffing urine. Foot-shock stress significantly reduced female urine sniffing time. Compared with mice that did not undergo the LH paradigm, LH males spent less time sniffing female urine, and citalopram treatment alleviated this reduction. Compared with their wildtype littermates, GluR6KO males sniffed female urine longer and showed enhanced saccharin preference. In rodents, sniffing female urine is a preferred activity accompanied by biological changes previously linked to reward-seeking activities. The FUST is sensitive to behavioral and genetic manipulation and to relevant drug treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.