Abstract

Abstract This paper deals with the class S containing functions which are analytic and univalent in the open unit disc U = {z ∈ ℂ : |z| < 1}. Functions f in S are normalized by f(0) = 0 and f′(0) = 1 and has the Taylor series expansion of the form f ( z ) = z + ∑ n = 2 ∞ a n z n f\left( z \right) = z + \sum\limits_{n = 2}^\infty {{a_n}{z^n}} . In this paper we investigate on the subclass of S of close-to-convex functions denoted as C gα (λ, δ) where function f ∈ C gα (λ, δ) satisfies Re { e i λ z f ′ ( z ) g α ( z ) } {\mathop{\rm Re}\nolimits} \left\{ {{e^{i\lambda }}{{zf'\left( z \right)} \over {g\alpha \left( z \right)}}} \right\} for | λ | < π 2 \left| \lambda \right| < {\pi \over 2} , cos(λ) > δ, 0 ≤ δ < 1, 0 ≤ α ≤ 1 and g α = z ( 1 − α z ) 2 {g_\alpha } = {z \over {{{\left( {1 - \alpha z} \right)}^2}}} . The aim of the present paper is to find the upper bound of the Fekete-Szego functional |a 3 − µa 2 2| for the class C g α (λ, δ). The results obtained in this paper is significant in the sense that it can be used in future research in this field, particularly in solving coefficient inequalities such as the Hankel determinant problems and also the Fekete-Szego problems for other subclasses of univalent functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.