Abstract

Insulin in mammals is known for its effect on carbohydrate metabolism and maintenance of blood sugar levels. In the present study, we explored the effect of exogenous insulin and 20-hydroxyecdysone (20E) on carbohydrate metabolism in Bombyx mori under the fed and food-deprived conditions. The study showed that insulin and 20E regulate the trehalose (major circulating sugar) level in B. mori, and larval feeding status plays a decisive role in influencing the action of these two hormones. At feeding, both insulin and 20E showed its hypertrehalosemic action but at food deprivation, these hormones acted as hypotrehalosemic factors. Although both insulin and 20E showed the same effect on the haemolymph trehalose level either at feeding or food deprivation, the metabolic regulation was different for these two hormones. Insulin treatment to fed larvae increased the haemolymph trehalose level without altering the effectiveness of trehalose utilization but possibly by inducing the activity of glycogen phosphorylase enzyme and releasing glucose-1-P for the increased synthesis of trehalose. The treatment of 20E to fed larvae also increased the trehalose level, but concurrently it also increased both the enzyme activity of trehalase and glycogen phosphorylase. Insulin treatment to food-deprived larvae decreased the circulating trehalose level by increasing the trehalose breakdown as the mRNA expression level of trehalase-2 and enzyme activity of trehalase increased in these larvae. The treatment of 20E to food-deprived larvae decreased the haemolymph trehalose possibly by decreasing its synthesis, as glycogen phosphorylase enzyme activity decreased in these larvae, thus restricting the availability of glucose-1-P for trehalose synthesis. The study, thus suggests that both insulin and 20E regulate carbohydrate metabolism in B. mori.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call