Abstract

Although most upwelling regions are marked by strong fluctuations in water temperature, few studies have examined how episodic cold-water events affect the physiology and ecology of benthic marine invertebrates. I tested the hypothesis that upwelling-related variation in water temperature regulates the feeding, growth, and energetics of two rocky intertidal predators, the sea star Pisaster ochraceus (Brandt, 1835) and the whelk Nucella canaliculata (Duclos, 1832). Sea stars and whelks were maintained in laboratory tanks at a constant 9 °C, a constant 12 °C, and a treatment that simulated the Oregon coast upwelling regime by cycling between 14-day periods of 12 and 9 °C. Early in the experiments, sea stars and whelks held at 9 °C consumed about 30% fewer mussels ( Mytilus trossulus) than those in warmer tanks. Despite lower consumption by whelks in colder tanks, 9 and 12 °C individuals attained the same final size. Similarly, sea stars in 9 °C tanks showed greater growth per gram of mussel tissue consumed than individuals held at 12 °C. These results suggest that reduced consumption under colder conditions was balanced by reduced metabolic costs. Moreover, there appeared to be an energetic advantage to living in the temperature regime characteristic of intermittent upwelling. Sea stars alternately exposed to 12 and 9 °C had a significantly higher growth rate, conversion efficiency, and storage of reserves in the pyloric caeca than individuals in the constant 12 °C tanks. Whelks maintained under fluctuating temperatures tended to grow faster than those held at constant 12 or 9 °C, although this trend was not statistically significant ( p=0.069). These results suggest that benthic consumers experiencing cyclic temperatures may feed intensely during periods of warmer water while benefiting from reduced metabolic costs during cold-water intrusions. Because the fecundity of Pisaster and Nucella is a function of energy stored during the upwelling season, interannual variability in upwelling patterns could alter the reproductive output of these species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call