Abstract

We present self-consistent comparisons of axissymmetric and 3-dimensional simulations of the tropospheric circulation under idealized physical conditions. These reveal a feedback of transient eddies onto the Hadley circulation which, first, strongly depends on equatorial heating and, second, is in case of realistic heating quite different from prescribed eddy forcing. A quantitative estimation for the eddy-induced mixing of vorticity into the poleward flow of the Hadley cell is given. The proposed relation is in accordance with observations. It is derived from the computational result that eddy momentum flux convergence is of the same order as the equatorward flux of relative vorticity generated by the Hadley circulation. Evaluation of the local budgets of sensible heat gives rise to a clear picture of how the poleward heat transports due to Hadley circulation and transient eddies interlock. This mechanism is found to be essential for an interpretation of the eddy feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.