Abstract

AbstractTropical cyclones (TCs) cause negative sea surface temperature anomalies by vertical mixing and other processes. Such cold wakes can cover substantial areas and persist for a month or longer. It has long been hypothesized that cold wakes left behind by intense TCs reduce the likelihood of subsequent TC development. Here, we combine satellite observations, a global atmospheric model, and a high‐resolution TC downscaling model to test this hypothesis and examine the feedback of cold wakes on subsequent TC tracks and intensities. Overall, cold wakes reduce the frequency of weak to moderate events but increase the incidence of very intense events. There is large spatial heterogeneity in the TC response, such as a southward shift of track density in response to cold wakes similar to that generated by Florence (2018). Cold wakes may be important for modeling and forecasting TCs, interpreting historical records and understanding feedbacks in a changing climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call