Abstract

Abstract The sources of predictability for the February 2021 cold air outbreak (CAO) over the central United States, which led to power grid failures and water delivery shortages in Texas, are diagnosed using a machine learning–based prediction model called a linear inverse model (LIM). The flexibility and low computational cost of the LIM allows its forecasts to be used for identifying and assessing the predictability of key physical processes. The LIM may also be run as a climate model for sensitivity and risk analysis for the same reasons. The February 2021 CAO was a subseasonal forecast of opportunity, as the LIM confidently predicted the CAO’s onset and duration four weeks in advance, up to two weeks earlier than other initialized numerical forecast models. The LIM shows that the February 2021 CAO was principally caused by unpredictable internal atmospheric variability and predictable La Niña teleconnections, with nominally predictable contributions from the previous month’s sudden stratospheric warming and the Madden–Julian oscillation. When run as a climate model, the LIM estimates that the February 2021 CAO was in the top 1% of CAO severity and suggests that similarly extreme CAOs could be expected to occur approximately every 20–30 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call