Abstract

Tunneling current—voltage characteristics for growing quantum dots of colloidal gold in a combined atomic force/scanning tunneling microscope system were obtained. It was assumed that ionic conduction produces the largest contribution to the tunneling current. The tunneling current—voltage characteristics were compared qualitatively to the theoretical curve of the field dependence of the probability of 2D dissipative tunneling that was calculated taking the influence of two local phonon modes of a wide-bandgap matrix into account. It was demonstrated that the experimental and theoretical curves agree qualitatively. This suggests that the dissipative tunneling mechanism may produce a contribution to the tunneling current through a growing quantum dot under a cantilever needle. This current may be amplified in clusters with sizes of 1–5 nm in thinner films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.