Abstract

ABSTRACTThe presence of autocorrelation in errors and multicollinearity among the regressors have undesirable effects on the least-squares regression. There are a wide range of methods which are proposed to overcome the usefulness of the ordinary least-squares estimator or the generalized least-squares estimator, such as the Stein-rule, restricted least-squares or ridge estimator. Therefore, we introduce a new feasible generalized restricted ridge regression (FGRR) estimator to examine multicollinearity and autocorrelation problems simultaneously for the general linear regression model. We also derive some statistical properties of the FGRR estimator and comparisons have been conducted using matrix mean-square error. Moreover, a Monte Carlo simulation experiment is performed to investigate the performance of the proposed estimator over the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.