Abstract

BackgroundBlood flow restriction training (BFR) has been demonstrated to increase muscle hypertrophy and strength, but has logistical and cost barriers. Garment-integrated BFR has the potential to reduce these barriers by lowering equipment demands and cost. The primary aim of the study was to explore the feasibility of garment-integrated BFR in the upper limb of healthy adults, with a secondary aim of exploring safety and efficacy.MethodsPhysically active and otherwise healthy participants with no previous experience with BFR were sought. Eligible participants completed a five-week garment-integrated BFR programme that involved completing two sessions per week. Feasibility was determined by a priori defined thresholds for recruitment, adherence to the garment-integrated BFR programme, and data collection. Safety was determined by recording adverse events and by monitoring for total arterial occlusion pressure using a fingertip pulse oximeter. Efficacy was determined by measuring push-ups to volitional failure, arm girth, and number of prescribed repetitions completed. Feasibility and safety outcomes were reported descriptively or as a proportion with associated 95% confidence intervals (95% CI). Mean change, 95% CIs, and associated effect sizes were calculated for efficacy outcomes.ResultsTwenty-eight participants were included (15 men, 13 women; mean age 31.6 years [±9.1]) and 27 successfully completed the study. Participants were successfully recruited within three months and 278/280 sessions were successfully completed (adherence=99.3%, 95% CI 97.4%, 99.9%). Minimal adverse events were reported; one incident of localised bruising (0.36%, 95% CI 0.06%, 2.0%) and three incidences of excessive pain during or post-exercise from two separate participants (1.07%, 95% CI 0.03%, 3.1%). 82/2240 pulse oximeter readings were not recorded (3.7%, 95% CI 2.9%, 4.5%). Mean push-ups to volitional failure increased by 40% (mean change=8.0, 95% CI 6, 10, d=1.40). Mean arm girth and number of prescribed repetitions completed were unchanged.ConclusionsGarment-integrated BFR is feasible and has no signal of important harm in the upper limb of healthy adults, and could proceed to a future trial with stop/go criteria for randomisation. Further work is required to investigate the efficacy of garment-integrated BFR and determine its equivalence or superiority compared to existing BFR methods.

Highlights

  • Blood flow restriction training (BFR) has been demonstrated to increase muscle hypertrophy and strength, but has logistical and cost barriers

  • It was uncertain if participants would be adherent to garment-integrated blood flow restriction training (BFR) or whether it could be safely applied

  • This study aimed to explore the feasibility, safety, and efficacy of garment-integrated BFR in the upper limb of healthy adults

Read more

Summary

Introduction

Blood flow restriction training (BFR) has been demonstrated to increase muscle hypertrophy and strength, but has logistical and cost barriers. Garment-integrated BFR has the potential to reduce these barriers by lowering equipment demands and cost. Current application of BFR involves either the use of a pneumatic cuff or a simple tourniquet (e.g., rubber tubing). Pneumatic cuffs allow for standardisation of occlusion pressure and limb placement, but are expensive (£350–£10,000) and require specialist equipment and supervision that limits their wider application. When BFR is used by trained professionals it is typically with specialist equipment to accurately regulate the applied occlusion pressure. Most research to date uses a defined percentage of total arterial occlusion pressure, which is not a realistic expectation of the practical application of BFR outside of a laboratory setting [4]. Comparable muscular responses in strength and hypertrophy are reported at varying levels of occlusion pressure [5, 6], questioning the need for defined measurement of a percentage of total arterial occlusion pressure, beyond ensuring sub-occlusive pressure for safety purposes [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call