Abstract

BackgroundThe primary aim of this study was to assess the level of engagement in computer-based simulations of functional tasks, using a haptic device for people with chronic traumatic brain injury. The objectives were to design functional tasks using force feedback device and determine if it could measure motor performance improvement.MethodsA prospective crosssectional study was performed in a biomedical research facility. The testing environment consisted of a single, interactive, stylus-driven computer session navigating virtual scenes in 3D space. Subjects had a haptic training session (TRAIN) and then had three chances to perform each virtual task: (i) remove tools from a workbench (TOOL), (ii) compose 3 letter words (SPELL), (iii) manipulate utensils to prepare a sandwich (SAND), and (iv) tool use (TUSE). Main Outcome Measures included self-report of engagement in the activities, improved performance on simulated tasks and observer estimate as measured by time to completion or number of words completed from baseline, correlations among performance measures and self-reports of boredom, neuropsychological symptom inventory (NSI), and The Purdue Peg Motor Test (PPT).ResultsParticipants were 19 adults from the community with a 1 year history of non-penetrating traumatic brain injury (TBI) and were able to use computers. Seven had mild, 3 moderate and 9 severe TBIs. Mean score on the Boredom Proneness Scale (BPS): 107 (normal range 81–117); mean NSI:32; mean PPT 54 (normal range for assembly line workers >67). Responses to intervention: 3 (15%)subjects did not repeat all three trials of the tasks; 100% reported they were highly engaged in the interactions; 6 (30%) reported they had a high level of frustration with the tasks, but completed them with short breaks. Performance measures: Comparison of baseline to post training: TOOL time decreased by (mean) 60 sec; SPELL increased by 2.7 words; TUSE time decreased by (mean) 68 sec; and SAND time decreased by (mean) 72 sec. PPT correlated with TOOL (r=−0.65, p=0.016) and TUSE time (r=−0.6, p=0.014). SPELL correlated with Boredom score (r=0.41, p=0.08) and NSI (r=−.49, p=0.05).ConclusionPeople with chronic TBI of various ages and severity report being engaged in using haptic devices that interact with 3D virtual environments. Haptic devices are able to capture objective data that provide useful information about fine motor and cognitive performance.

Highlights

  • Traumatic Brain Injury (TBI) affects 0.4% people in the US and 0.085% are admitted to hospital [1]

  • The study was approved by the George Mason University (Mason) Institutional Review Board (IRB) and the National Institutes of Health (NIH) IRB

  • While we observed improved performance in the virtual task, utility in real life and its relevance to specific functional tasks remains to be tested

Read more

Summary

Introduction

Traumatic Brain Injury (TBI) affects 0.4% people in the US and 0.085% are admitted to hospital [1]. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone. Most are under 45 years of age [2]. This presents a significant challenge for the health care community. The primary aim of this study was to assess the level of engagement in computer-based simulations of functional tasks, using a haptic device for people with chronic traumatic brain injury. The objectives were to design functional tasks using force feedback device and determine if it could measure motor performance improvement

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call