Abstract

Once turmeric has been ground into powder, it is difficult to tell visually if it has been tampered with. In this study, ATR-FTIR spectroscopy was used in tandem with one-class support vector machine (OCSVM) to detect adulteration in turmeric powder. The OCSVM models were trained using 42 pure turmeric powder samples, optimized using 30 pure turmeric powder samples, and subsequently evaluated by classifying 30 pure and 120 adulterated (cornstarch, Metanil Yellow, Orange II, and Sudan I) samples. Preprocessing methods, such as Savitzky-Golay (SG)-derivatives, standard normal variate (SNV), and multiplicative scatter correction (MSC), were used individually and in combination to obtain the best-performing model. Models were assessed by comparing the sensitivity, specificity, and efficiency values and compared with one-class soft independent modeling of class analogy (OCSIMCA). The best performing OCSVM model (sensitivity = 1.00, specificity = 0.89) was obtained by first conducting an MSC on the raw data followed by SG-2nd derivative transformation. It also has an efficiency value of 0.94, which was 0.14 higher than when data preprocessing was not done. Compared to the results of OCSIMCA, the OCSVM model gave a higher efficiency value and can detect lower levels of cornstarch adulteration. Also, the results showed that inclusion of data preprocessing can lead to a better classification model. With the obtained evaluation parameter values, ATR-spectroscopy coupled with OCSVM demonstrated its potential for screening turmeric powder products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.