Abstract
The economic potential of activated carbon (AC) synthesis from walnut shell biomass for CO2 capture was evaluated in the present study. For this purpose, the chemical activation was employed to manufacture ACs and the effect of different impregnation ratios of activation agents, comprising KOH (KH) and H3PO4 (HP), onto the properties of fabricated ACs was examined. The obtained results demonstrated that the synthesized AC by HP activation with an impregnation ratio of 1:2.5, which was identified as HP2.5, possesses the highest surface area (1512.6m2/g), micropore volume percentage (74.65%), and CO2 adsorption (3.55mmol/g) at 1bar and 30°C. Moreover, the equilibrium CO2 adsorption data for HP2.5 were better fitted with the Freundlich model, indicating the multilayer CO2 adsorption onto the heterogeneous AC surface dominantly through a physisorption process. In addition, the economic estimations revealed a cost of about $1.83/kg for the ultimate production that was significantly lower than the most of available CACs in the market. Therefore, walnut shells can be considered as a cost-effective and promising biomass source from a scale-up point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.