Abstract

Background: People post-stroke can learn a novel locomotor task but require more practice to do so. Implementing an approach that can enhance locomotor learning may therefore improve post-stroke locomotor recovery. In healthy adults, an acute high-intensity exercise bout before or after a motor task may improve motor learning and has thus been suggested as a method that could be used to improve motor learning in neurorehabilitation. However, it is unclear whether an acute high-intensity exercise bout, which stroke survivors can feasibly complete in neurorehabilitation session, would generate comparable results.Objective: To determine a feasible, high-intensity exercise protocol that could be incorporated into a post-stroke neurorehabilitation session and would result in significant exercise-induced responses.Methods: Thirty-seven chronic stroke survivors participated. We allocated subjects to either a control (CON) or one of the exercise groups: treadmill walking (TMW), and total body exercise (TBE). The main exercise-induced measures were: average intensity (% max intensity) and time spent (absolute: seconds; normalized: % total time) at target exercise intensity, and magnitudes of change in serum lactate (mmol/l) and brain-derived neurotrophic factor (BDNF; ng/ml).Results: Compared to CON, both exercise groups reached and exercised longer at their target intensities and had greater responses in lactate. However, the TBE group exercised longer at target intensity and with greater lactate response than the TMW group. There were no significant BDNF responses among groups.Conclusions: An acute high-intensity exercise bout that could be incorporated into a neurorehabilitation learning-specific session and results in substantial exercise-induced responses is feasible post-stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.