Abstract

Objectives: The aim of this study was to determine the feasibility of a portable electrospinning device for the application of wound dressings. Approach: Four polymer nanofibers dressings were applied on superficial partial thickness wounds to a porcine model and compared with a traditional paraffin tulle gras dressing. The polymer nanofibrous dressings were applied using a handheld portable electrospinning device activated at a short distance from the wound. The partial thickness donor sites were evaluated on day 2, 7, and 14 when dressings were removed and tissue samples were taken for histological examination. Results: No significant difference was detected between the different electrospun nanofibrous dressings and traditional paraffin tulle gras. Desirable characteristics of the electrospun nanofiber dressing group included nontouch technique, ease of application, adherence and reduction in wound edema and inflammation. There was no delayed wound healing or signs of infection reported in both the electrospun nanofiber and traditional tulle gras dressings. Innovation: Used on partial thickness wounds, polymer electrospun nanofiber dressings provide excellent surface topography and are a nontouch, feasible, and safe method to promote wound healing with the potential to reduce wound infections. Such custom-made nanofibrous dressings have implications for the reduction of pain and trauma, number of dressing changes, scarring, and an added cost benefit. Conclusion: We have demonstrated that this portable handheld electrospinning device can be utilized for different formulations and materials and customized according to the characteristics of the target wound at the various stages of wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.