Abstract

DNA-protein bioconjugation is an appealing target-tracking strategy. The new capability of DNA molecule as a biological nanomaterial endows unique fluorescence and physicochemical properties to be applied in bioimaging. Progression in targeted imaging is contingent on the conjugation of diagnostic nanoparticles to biomolecular signatures, particularly antibody-based ligands. Here, we have reported our recent experience, DNA-dot synthesis and characterization, the covalent conjugation of DNA-dot to goat F(ab')2 IgG and Epidermal Growth Factor Receptor (EGFR) antibodies, DNA-dot@antibody coupling confirmation, and fluorescent targeted imaging of lung cancer cell line. As a result, the average size of DNA-dot was 4.5–5 nm which was conjugated to amine-rich antibodies with returned PO4−1 groups on the DNA-dot surface via PN bond. The synthetic DNA-dots were conjugated to the goat F(ab')2 IgG and tested for fluorescent detection usability by indirect Dot-blot assay. Also, DNA-dot@EGFR conjugates identified lung cancer cells with 84–92% specificity and 100% sensitivity in five concentrations, associated with 0.0025 to 0.04 g 100 μL−1 DNA-dot. The results demonstrated that bioconjugated DNA-dot can do the diagnosis profiling of molecular biomarkers. Generally, DNA-dot bioconjugation with antibody is implemented within two days and biomarker detection takes one day. Consequently, DNA-dot@antibody is potentially a toxic-free, swift, and efficient method of antibody labeling that opens up new horizons in fluorescent nanoimaging in the field of cancer cell detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call