Abstract

Examine the feasibility of whole-cell patch-clamp recordings from the cardiac ventricular slices of newborn (P(3)-P(7)) Sprague-Dawley rats to identify a better substitute for single cardiac myocytes prepared using enzymatic treatment. High resistance seals (>1 GΏ) were obtained from cardiac ventricle tissues prepared without using enzymatic treatment. Thereafter, cell-attached and whole-cell patch-clamp techniques were used on thin cardiac slices (200 μm thick) in 2009 in the Institute of Molecular Medicine of Peking University. An averaged sodium current (n=11 cells) was recorded in the cell-attached mode, and this displayed features similar to those previously reported for isolated rat ventricular myocytes. The outward potassium current, hyperpolarization-activated cation channel or I (f) channel (HCN channel), and action potential were recorded in the whole-cell mode (n=2 cells), and the identical properties were observed from the cardiac slices. The cell-attached mode is stable and reliable for recording the ion current. The resting potential for cardiac slices measured using current-clamp recording in the whole-cell mode was -50 to -70 mV. The resting potential of cardiac slices has properties similar to those of enzyme-prepared cardiomyocytes, with the exception that it is positive. We achieved whole-cell patch-clamp recordings from cardiac slices and affirmed the feasibility and values of both cell-attached and whole-cell recording modes using this technique. Nevertheless, there remain difficulties and limitations associated with the application of whole-cell patch-clamping to cardiac slices, due primarily to the existence of large amounts of connective tissue even in newborn rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.