Abstract

ABSTRACTHere, we report experimental results on melting and subsolidus phase relations in the Fe–Fe2P system at 6 GPa and 900–1600°C. The system has two P-bearing compounds: Fe3P and Fe2P. X-ray diffraction patterns of these compounds correspond to schreibersite and barringerite, respectively. The Fe–Fe3P eutectic appears at 1075°C and 16 mol% P. Schreibersite (Fe3P) melts incongruently at 1250°C to produce barringerite (Fe2P) and liquid containing 23 mol% P. Barringerite (Fe2P) melts congruently at 1575°C. Maximum solid solution of P in metallic iron at 6 GPa is 5 mol%. As temperature increases to 1600°C, the P solubility in the metallic iron decreases to 0.5 mol%, whereas the P content in coexisting liquid decreases to 3 mol%. The composition of quenched phases from Fe–P melt coincides with the compositions of equilibrium phases at corresponding temperature. Consequently, the composition of quenched products of Fe-P melts in meteorites can be used for reconstruction of P–T conditions of their crystallization under ambient or low pressures or during shock melting by impact collisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call