Abstract
Root meristem activity is essential for root morphogenesis and adaptation, but the molecular mechanism regulating root meristem activity is not fully understood. Here, we identify an F-box family E3 ubiquitin ligase named SHORT PRIMARY ROOT (SHPR) that regulates primary root (PR) meristem activity and cell proliferation in rice. SHPR loss-of-function mutations impair PR elongation in rice. SHPR is involved in the formation of an SCF complex with the Oryza sativa SKP1-like protein OSK1/20. We show that SHPR interacts with Oryza sativa SEUSS-LIKE (OsSLK) in the nucleus and is required for OsSLK polyubiquitination and degradation by the ubiquitin 26S-proteasome system (UPS). Transgenic plants overexpressing OsSLK display a shorter PR phenotype, which is similar to the SHPR loss-of-function mutants. Genetic analysis suggests that SHPR promotes PR elongation in an OsSLK-dependent manner. Collectively, our study establishes SHPR as an E3 ubiquitin ligase that targets OsSLK for degradation, and uncovers a protein ubiquitination pathway as a mechanism for modulating root meristem activity in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.