Abstract

Two equation and higher order closures for compressible turbulence fail to capture the compressible wall layers’ log scaling. Accounting for the distinction between Favre and Reynolds averaged variables in the compressible moment equations indicate that turbulent transport expressions obtained using the ‘‘variable density approximation’’ are in error. The error is related to the enstrophy, a Reynolds averaged variable appearing in the equation for the Favre averaged k; recognizing this fact an expression for the transport of dissipation consistent with simple mixing length arguments is obtained. Within the (limited) context of a gradient transport hypothesis a rational form for the turbulent transport of the dissipation is found. Modestly better agreement with the well established compressible Van Driest log scaling is found in a k−ε calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.