Abstract
International, economic and environmental contexts in this century are strongly affected by risks and uncertainties. Due to the long-term nature of forest investment, forest managers must integrate risks and uncertainties into their decisions. Our objective is to build a decision support tool to optimize forest management under multiple risks: extreme events and price variations. Our method integrates, into an economic model, different types of models on forest growth, price functions, predicted storm intensity and intervals, and damage functions. A numerical simulation applied to European beech (Fagus sylvatica) in Northwestern France shows that price variation as between 1974 and 2016 produces higher economic loss than does storm damage. We conclude on the need to concentrate forest policy on the development of new technologies and wood industry practices to increase the value of this natural resource. However, future climate change may well influence storm frequency and intensity, and this places limits on our conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.