Abstract

With the prevalence of renewable energy sources such as wind power in the power system, analyzing the fault characteristics of systems composed of DFIGs is becoming increasingly important. Therefore, this article analyzes, at first theoretically, the fault characteristics of a doubly fed induction generator (DFIG) during fault periods. It was found that the fault current of the DFIG exhibited the frequency offset phenomenon, which is affected by the depth of voltage dips and can negatively impact traditional distance protection. Furthermore, a method using a dynamic voltage restorer (DVR) based on superconducting magnetic energy storage (SMES) was adopted to compensate for the fault voltage of DFIG, which can mitigate the voltage dips of the DFIG. This method can not only achieve the fault ride through for DFIG but also significantly improve the frequency offset of the fault current during fault periods. Finally, a model composed of a 2.5 MW DFIG-based wind turbine and a 2.5 MW DVR-based SMES was built using a real-time digital simulator (RTDS) platform, and the simulation results showed that the fault stator voltage of DFIG can be compensated at a rated value of 0.69 kV, and the frequency of fault current can be maintained at 50 Hz These results validate the excellent performance of the method in achieving the fault ride through of DFIG and improving the frequency offset of the fault current by comparing multiple type faults while employing different protection methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call