Abstract

The aims of this study were to use metagenomics to reveal the fates of antibiotic resistance genes (ARGs) during composting under the regulation of peroxydisulfate and clarify the relationship between ARGs and cell membrane permeability. Results showed that peroxydisulfate increased cell membrane permeability by effectively regulating the expression of outer membrane protein and lipopolysaccharide related genes. Besides, it reduced polysaccharides and proteins in extracellular polymer substances by 36% and 58%, respectively, making it easier for intracellular ARGs (i-ARGs) to reach the extracellular environment, among which the absolute intracellular abundance of mphK, Erm(31), and tet(44) decreased to 1.2, 1.0, and 0.89 fold of the control, respectively. Finally, variation partitioning analysis showed that i-ARGs dominated the removal of ARGs. These results revealed that the removal of i-ARGs by activated peroxydisulfate was the key to the removal of ARGs and increased cell membrane permeability played a key role for peroxydisulfate to remove i-ARGs during composting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.