Abstract
The Great Whirl is a large, anticyclonic gyre that develops off the northern Somali coast during the Southwest Monsoon. In August 1995 the NOAA Ship Malcolm Baldrige surveyed the seaward edge of the upwelling zone associated with this gyre. The fate of recently upwelled water was followed by mapping surface property distributions along a cool surface feature that extended seaward along the northern edge of the Great Whirl. Surface properties ( T, S, and chlorophyll a), surface velocity (ADCP), and XBT and CTD casts were interpreted in relation to the trajectories of three instrumented surface drifters deployed in the feature. Cool surface waters correspond in space to the shoaling of the upper thermocline and offshore advection from the coast. Surface chlorophyll a concentrations decreased from 2 to 3 μg l −1 in the upwelling zone to 0.5–1.5 μg l −1 in the surface feature and contiguous waters. Maximum surface velocities in the Great Whirl were 250 cm s −1 with velocities> 100 cm s −1 along the northern perimeter of the gyre. Decorrelation time-scales for u and v velocity components, and chlorophyll a fluorescence, from the drifters were on the order of 4 to 7 days. These times are comparable to those over which the drifters were ejected from the Great Whirl into the Socotra Gyre. Decorrelation times for sea-surface temperature were somewhat longer (10 days). All three platforms passed between the Somali coast and Socotra within a week of their deployment and then traveled east into the northern Arabian Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.