Abstract

This study measured PAHs contained in the feedstock oil, carbon black products, and stack flue gas, then the fate of PAHs was assessed from the mass balance point of view for a carbon black manufacturing process. Results show the carbon black manufacturing process would result in the depletion of total-PAHs and the summation of top three carcinogenic PAH species (i.e., BbF+BaP+DBA) up to 98.15% and 99.83%, respectively. The above results suggest that the carbon black manufacturing process would result in not only the decrease of the amount of total-PAHs, but also the carcinogenic potencies of PAHs originally contained in the feedstock oil. Regarding PAHs contained in the carbon black products and stack flue gas, this study suggest they might be resulted mostly from high-temperature pyrolytic process, rather than the PAHs originally contained in the feedstock oil. For the carbon black manufacturing industry, since the soot (i.e., the carbon black) was completely collected as its final product, therefore most of carbon black-bearing PAHs did not directly release to atmosphere. On the other hand, PAHs contained in the stack flue gas were directly exhausted to the atmosphere and thus were assessed in this study. The results show the emission rates for total-PAHs and BbF+BaP+DBA for the stack flue gas were 2.18 kg/day and 1.50 g/day, respectively, which were approximately 25% and 40% of those exhausted from a municipal incinerator with a treatment capacity of 300 metric tons/day. It is concluded that the carbon black manufacturing process might not be a significant PAHs emission source, as compared to the municipal incinerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.