Abstract

In this study, results from a realistic 3D hydrodynamic and sediment transport model, applied to a channel in the Dutch Wadden Sea, are analyzed in order to assess the effect of short-term wind forcing, the impact of fresh water effects, and the variability induced by the spring-neap cycle on the transport of suspended sediment. In the investigated region, a pilot study for sediment nourishment, the so-called Mud Motor, is executed. This project aims for the beneficial re-use of dredged harbor sediments through the disposal of these sediments at a location where natural currents are expected to transport them toward a nearby salt marsh area. The model results presented in this study advance the understanding of the driving forces that determine sediment transport in shallow, near-coastal zones, and can help to improve the design of the Mud Motor. In the investigated channel, which is oriented parallel to the coastline, tidal asymmetries generally drive a transport of sediment in flood direction. It was found that already moderate winds along the channel axis reverse (wind in ebb direction), or greatly enhance this transport, up to an export of sediment over the adjacent water shed (wind in flood direction). The most beneficial wind conditions (moderate westerly winds) can cause an accumulation of more than 90% of the initial 200 tons sediment pool on the intertidal area; during less favorable conditions (northeasterly winds), less than a third of the dumped sediment is transported onto the mudflat. On-shore winds induce a transport toward the coast. Surprisingly, sediment pathways are only sensitive to the exact disposal location in the channel during wind conditions that counteract the tidally driven transport, and freshwater effects play no significant role for the dispersal of sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.