Abstract

We show that the fate of moons of a close-in giant planet is mainly determined by the migration history of the planet in the protoplanetary disk. As the planet migrates in the disk from beyond the snow line towards a multi-day period orbit, the formed and forming moons become unstable as the planet's sphere of influence shrinks. Disk-driven migration is faster than the moons' tidal orbital evolution. Moons are eventually ejected from around close-in exoplanets or forced into collision with them before tides from the star affect their orbits. If moons are detected around close-in exoplanets, they are unlikely to have been formed in situ, instead they were captured from the protoplanetary disk on retrograde orbits around the planets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.