Abstract

We present two sets of grid-based hydrodynamical simulations of high-velocity clouds (HVCs) traveling through the diffuse, hot Galactic halo. These HI clouds have been suggested to provide fuel for ongoing star formation in the Galactic disk. The first set of models is best described as a wind-tunnel experiment in which the HVC is exposed to a wind of constant density and velocity. In the second set of models we follow the trajectory of the HVC on its way through an isothermal hydrostatic halo towards the disk. Thus, we cover the two extremes of possible HVC trajectories. The resulting cloud morphologies exhibit a pronounced head-tail structure, with a leading dense cold core and a warm diffuse tail. Morphologies and velocity differences between head and tail are consistent with observations. For typical cloud velocities and halo densities, clouds with H{\small{I}} masses $< 10^{4.5}$ M$_\odot$ will lose their H{\small{I}} content within 10 kpc or less. Their remnants may contribute to a population of warm ionized gas clouds in the hot coronal gas, and they may eventually be integrated in the warm ionized Galactic disk. Some of the (still over-dense, but now slow) material might recool, forming intermediate or low velocity clouds close to the Galactic disk. Given our simulation parameters and the limitation set by numerical resolution, we argue that the derived disruption distances are strong upper limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.