Abstract

Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disk decomposition catalogues based on the Sloan Digital Sky Survey (SDSS) to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or disks of present-day massive galaxies. In this study, we designate a "compact core" as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ~ 0.1, there are "abundant" compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ~ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in disks. This result generalises the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disk are formed later.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.