Abstract

17β-estradiol is a naturally occurring estrogen, and livestock manure applied to agricultural fields is a major source to the environment. Liquid swine manure is widely applied to agricultural fields in the Canadian Prairies, a region where the majority of the annual runoff occurs during a brief snowmelt period over frozen soil. Transport of estrogens from manure amendments to soil during this important hydrological period is not well understood but is critical to mitigating the snowmelt-driven offsite transport of estrogens. This study quantified the concentration and load of 17β-estradiol in snowmelt from an agricultural field with a history of manure application under manure application methods: no manure applied, manure applied on the sub-surface, and on the surface, using a laboratory simulation study with flooded intact soil cores and a field study during snowmelt. A higher concentration of 17β-estradiol was in the laboratory simulation than in the field (mean laboratory pore water = 1.65 ± 1.2 μg/L; mean laboratory flood water = 0.488 ± 0.58 μg/L; and mean field snowmelt = 0.0619 ± 0.048 μg/L). There were no significant differences among manure application methods for 17β-estradiol concentration. Laboratory pore water concentrations significantly increased over time, corresponding with changes in pH. In contrast, there was no significant change in the field snowmelt concentrations of 17β-estradiol over time. However, for both laboratory simulation experiments and field-based snowmelt experiments, mean concentrations of 17β-estradiol were higher with subsurface than surface-applied manure, and the cumulative load of 17β-estradiol was significantly higher in the sub-surface than in surface applied. The mean cumulative load from the field study across all treatments (6.91 ± 3.7 ng/m2) approximates the magnitude of 17β-estradiol that could be mobilized from manured fields. The sub-surface application of manure seems to increase the persistence of 17β-estradiol in soil, thus enhancing the potential loss to snowmelt runoff.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call