Abstract

Information about the impact of nitrogen (N) deposition on the fate of deposited N in peatland ecosystems is lacking. Thus we investigated the fate of experimentally added 15 N in long-term N-fertilized treatments in a Sphagnum-dominated ombrotrophic bog. Fertilization significantly stimulated vascular plant and suppressed Sphagnum and Polytrichum moss growth. N content in peat, mosses, and vascular plants was raised by the fertilizer addition and reached a maximum at 3.2 g m -2 N input level with phosphorus (P) and potassium (K) addition. Most of N was retained in the vegetation and upper 10 cm of the peat. When N deposition equalled 1.6 g m -2 and less, or 3.2 g m -2 N with P and K addition, no inorganic N leaching was observed on the plots. This result indicates that co-fertilization with P and K raised the N retention capacity and that critical N loads with respect to N saturation depend on P and K availability. Most of the deposited 15 N was recovered in the bulk peat, which may be related to a rapid immobilization of inorganic N by microorganisms and mycorrhizal assimilation. Increase of N, P, and K fertilization increased the contribution of vascular plants to N retention significantly and reduced those of mosses. The increase was mainly related to enhanced productivity, vascular biomass and N content in tissues; the reduced retention by mosses resulted from both reduced moss biomass and assimilation. The study shows that the N filter function of ombrotrophic bogs will be influenced by interactions with other nutrients and shifts in plant community structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.