Abstract

Six tributaries to the Chesapeake Bay were analyzed for suspended particulate matter, dissolved organic carbon, particulate organic carbon, mercury, methylmercury, lead, nickel, zinc, cadmium, chromium, and copper. This study examined the importance of flow regime, suspended particulate concentration, and watershed characteristics on the transport of mercury, methylmercury, and other trace metals. Total mercury concentrations were higher under high flow conditions which is consistent with the tendency of this metal to bind strongly to particulate matter. Methylmercury showed less flow rate dependence. Nickel, lead, and zinc concentrations responded strongly to flow rate on the Potomac River, while weaker correlations were found on the other rivers sampled. Cadmium, copper, and chromium concentrations were the least influenced by flow. Partition coefficients calculated in this study were similar to those of other estuaries and overall decreased in the order of Hg>Ni–MMHg>Cr–Pb–Zn>Cd>Cu. Watershed yield estimates and associated retention factors were calculated for the various rivers. These calculations showed that for most of the rivers, mercury was the most strongly retained within the watershed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.