Abstract

Programmed cell death (PCD) is a widespread response of plants against abiotic stress, such as heavy metal toxicity. Tungsten (W) is increasingly considered toxic for plants since it irreversibly affects their growth. Therefore, we investigated whether W could induce some kind of PCD in plants, like other heavy metals do. The morphology of cell and nucleus, the integrity of the cytoskeleton, Evans Blue absorbance and the expression of PCD-related genes were used as indicators of PCD in W-treated roots of Pisum sativum (pea). TEM and fluorescence microscopy revealed mitotic cycle arrest, protoplast shrinkage, disruption of the cytoskeleton and chromatin condensation and peripheral distribution in the nucleus of W-affected cells. Moreover, Evans Blue absorbance in roots increased in relation to the duration of W treatment. These effects were suppressed by inhibitors of the 26S proteasome, caspases and endoplasmic reticulum stress. In addition, silencing of DAD-1 and induction of HSR203J, BiP-D, bZIP28 and bZIP60 genes were also recorded in W-treated pea roots by semi-quantitative RT-PCR. The above observations show that W induces a kind of PCD in pea roots, further substantiating its toxicity for plants. Data imply that endoplasmic reticulum stress-unfolded protein response may be involved in W-induced PCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call