Abstract

The fastest moving stars provide insight into several fundamental properties of the Galaxy, including the escape velocity as a function of Galactocentric radius, the total mass, and the nature and frequency of stellar encounters with the central supermassive black hole. The recent second data release of Gaia has allowed the identification of new samples of stars with extreme velocities. Discrimination among the possible origins of these stars is facilitated by chemical abundance information. We here report the results from our high-resolution spectroscopic followup, using the Apache Point Observatory, of five late-type `hypervelocity' star candidates, characterised by total Galactic rest-frame velocities between 500-600 km/s and estimated to have a probability larger than 50% to be unbound from the Milky Way. Our new results confirm the Gaia DR2 radial velocities to within 1 km/s. We derived stellar atmospheric parameters and chemical abundances for several species including $\alpha$-elements (Mg, Ti, Si, Ca), Fe-peak elements (Fe, Ni, Co, Cr, Mn), neutron-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu) and odd-Z elements (Na, Al, K, V, Cu, Sc). We find that all stars observed are metal-poor giants with -2 $\leq$ [Fe/H] $\leq$ -1 dex and are chemically indistinguishable from typical halo stars. Our results are supported by the chemical properties of four additional stars with extreme space motions which were observed by existing spectroscopic surveys. We conclude that these stars are simply the high-velocity tail of the stellar halo and effectively rule out more exotic origins such as from the Galactic centre or the Large Magellanic Cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.