Abstract
Atmosphere-only CMIP5 idealized climate experiments with quadrupling of atmospheric CO2 are analyzed to understand the fast response of the tropical overturning circulation to this forcing and the main mechanism of this response. A new metric for the circulation, based on pressure velocity in the subsidence regions, is defined, taking advantage of the dynamical stability of these regions and their reduced sensitivity to the GCM’s cloud and precipitation parameterization schemes. This definition permits us to decompose the circulation change into a sum of relative changes in subsidence area, static stability, and heating rate. A comparative analysis of aqua- and Earth-like planet experiments reveals the effect of the land–sea contrast on the total change in circulation. On average, under the influence of CO2 increase without surface warming, the atmosphere radiatively cools less, and this drives the 3%–4% slowdown of the tropical circulation. Even in an Earth-like planet setup, the circulation weakening is dominated by the radiatively driven changes in the subsidence regions over the oceans. However, the land–sea differential heating contributes to the vertical pattern of the circulation weakening by driving the vertical expansion of the tropics. It is further found that the surface warming would, independently of the CO2 effect, lead to up to a 12% slowdown in circulation, dominated by the enhancement of the static stability in the upper troposphere. The two mechanisms identified above combine in the coupled experiment with abrupt quadrupling, causing a circulation slowdown (focused in the upper troposphere) of up to 18%. Here, the independent effect of CO2 has a considerable impact only at time scales less than one year, being overtaken quickly by the impact of surface warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.