Abstract

With the increasing awareness of privacy protection and data security, people’s concerns over the confidentiality of sensitive data still limit the application of distributed artificial intelligence. In fact, a new encryption form, called homomorphic encryption(HE), has achieved a balance between security and operability. In particular, one of the HE schemes named Paillier has been adopted to protect data privacy in distributed artificial intelligence. However, the massive computation of modular multiplication in Paillier greatly affects the speed of encryption and decryption. In this paper, we propose a fast CRT-Paillier scheme to accelerate its decryption process. We first introduce the Montgomery algorithm to the CRT-Paillier to improve the process of the modular exponentiation, and then compute the modular exponentiation in parallel by using OpenMP. The experimental results show that our proposed scheme has greatly heightened its decryption speed while preserving the same security level. Especially, when the key length is 4096-bit, its speed of decryption is about 148 times faster than CRT-Paillier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.