Abstract

Geysers episodically erupt liquid and vapor. Despite two centuries of scientific study, basic questions persist—why do geysers exist? What determines eruption intervals, durations, and heights? What initiates eruptions? Through monitoring eruption intervals, analyzing geophysical data, taking measurements within geyser conduits, performing numerical simulations, and constructing laboratory models, some of these questions have been addressed. Geysers are uncommon because they require a combination of abundant water recharge, magmatism, and rhyolite flows to supply heat and silica, and large fractures and cavities overlain by low-permeability materials to trap rising multiphase and multicomponent fluids. Eruptions are driven by the conversion of thermal to kinetic energy during decompression. Larger and deeper cavities permit larger eruptions and promote regularity by isolating water from weather variations. The ejection velocity may be limited by the speed of sound of the liquid + vapor mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.