Abstract

In the present study the vestibular components of the fasciculus longitudinalis medialis (flm) were investigated in the lizard Varanus exanthematicus with various tracing techniques: anterograde transport of horseradish peroxidase to study vestibulo-oculomotor and vestibulospinal projections, the multiple retrograde fluorescent tracer technique for the cells of origin of such projections. Internuclear projections between the oculomotor and abducens nuclei could also be studied in this way. Rather extensive vestibulo-ocular projections passing via the flm were demonstrated. Mainly ipsilateral ascending projections arise in the dorsolateral vestibular nucleus, mainly contralateral ascending projections in the ventromedial vestibular nucleus and adjacent parts of the ventrolateral and descending vestibular nuclei. Furthermore, distinct bilateral ascending projections of the nucleus prepositus hypoglossi were demonstrated. Extensive vestibulospinal projections pass via the flm and form the medial vestibulospinal tract. This largely contralateral descending pathway arises predominantly in the ventromedial and descending vestibular nuclei. Terminal structures presumably arising in the ventromedial and descending vestibular nuclei were found on contralateral neurons, probably motoneurons innervating neck muscles. Vestibular neurons with both ascending (presumably to extra-ocular motoneurons) and descending projections to the spinal cord are present in all vestibular nuclei, although preferentially in the ventromedial vestibular nucleus and adjacent parts of the ventrolateral and descending vestibular nuclei. However, also in the dorsolateral vestibular nucleus a substantial number of double labeled neurons were found. These vestibular neurons with both vestibulomesencephalic and vestibulospinal projections are probably involved in combined movements of eyes and head. Evidence for reciprocal internuclear connections between the oculomotor and abducens nuclei was found. Neurons in the dorsal part of the oculomotor nucleus probably project to the ipsilateral abducens nucleus, while neurons in the abducens nucleus most likely project to the contralateral oculomotor nucleus. These reciprocal internuclear connections between the oculomotor and abducens nuclei probably play an important role in conjugate horizontal eye movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call