Abstract
We provide some new computations of Farrell–Tate and Bredon (co)homology for arithmetic groups. For calculations of Farrell–Tate or Bredon homology, one needs cell complexes where cell stabilizers fix their cells pointwise. We provide two algorithms computing an efficient subdivision of a complex to achieve this rigidity property. Applying these algorithms to available cell complexes for PSL4(Z) provides computations of Farrell–Tate cohomology for small primes as well as the Bredon homology for the classifying spaces of proper actions with coefficients in the complex representation ring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.