Abstract
Arbuscular mycorrhizal (AM) fungi contribute to plant nitrogen (N) acquisition. Recent studies demonstrated the transport of N in the form of ammonium during AM symbiosis. Here, we hypothesize that induction of specific ammonium transporter (AMT) genes in Sorghum bicolor during AM colonization might play a key role in the functionality of the symbiosis. For the first time, combining a split-root experiment and microdissection technology, we were able to assess the precise expression pattern of two AM-inducible AMTs, SbAMT3;1 and SbAMT4. Immunolocalization was used to localize the protein of SbAMT3;1. The expression of SbAMT3;1 and SbAMT4 was greatly induced locally in root cells containing arbuscules and in adjacent cells. However, a split-root experiment revealed that this induction was not systemic. By contrast, a strictly AM-induced phosphate transporter (SbPt11) was expressed systemically in the split-root experiment. However, a gradient of expression was apparent. Immunolocalization analyses demonstrated that SbAMT3;1 was present only in cells containing developing arbuscules. Our results show that the SbAMT3;1 and SbAMT4 genes are expressed in root cortical cells, which makes them ready to accommodate arbuscules, a process of considerable importance in view of the short life span of arbuscules. Additionally, SbAMT3;1 might play an important role in N transfer during AM symbiosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.