Abstract

Familial hemiplegic migraine is associated with at least 13 different missense mutations in the alpha1A Ca(2+) channel subunit. Some of these mutations have been shown to affect the biophysical properties of alpha1A currents. To date, no study has examined the influence of such mutations on the G-protein regulation of channel function. Because G-proteins inhibit movement of the voltage sensor, we examined the effects of the R192Q mutation, which neutralizes a positive charge in the first S4 segment. Human wild-type (WT) or R192Q mutant channels were expressed in human embryonic kidney tsA-201 cells along with dopamine D2 receptors. Application of quinpirole induced fast (approximately 1 s), pertussis toxin-sensitive inhibition of alpha1A(WT) and alpha1A(R192Q) Ca(2+) currents, consistent with the activation of a membrane-delimited pathway. alpha1A(WT) Ca(2+) currents were inhibited by 62.9 +/- 0.9 % (n = 27), whereas alpha1A(R192Q) Ca(2+) currents were inhibited by only 47.9 +/- 1.8 % (n = 35; P < 0.001). Concentration-response analysis showed that only the extent of inhibition was affected, with no change in agonist potency (EC(50) = 1 nM). Prepulse facilitation, which is a characteristic of voltage-dependent inhibition, was also reduced by the R192Q mutation. However, the kinetics of facilitation and slow activation were not affected, suggesting that G-protein-Ca(2+) channel affinity was unchanged. These results show that the R192Q mutation reduces the G-protein inhibition of P/Q-type Ca(2+) channels, probably by altering mechanisms by which Gbetagamma subunit binding induces a change in channel gating. Altered G-protein modulation and the consequent reduced presynaptic inhibition may contribute to migraine attacks by favouring a persistent state of hyperexcitability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.