Abstract
The iterative transformation method, defined within the framework of the group invariance theory, is applied to the numerical solution of the Falkner-Skan equation with relevant boundary conditions. In this problem a boundary condition at infinity is imposed which is not suitable for a numerical use. In order to overcome this difficulty we introduce a free boundary formulation of the problem, and we define the iterative transformation method that reducess the free boundary formulation to a sequence of initial value problems. Moreover, as far as the value of the wall shear stress is concerned we propose a numerical test of convergence. The usefulness of our approach is illustrated by considering the wall shear stress for the classical Homann and Hiemenz flows. In the Homann's case we apply the proposed numerical test of convergence, and meaningful numerical results are listed. Moreover, for both cases we compared our results with those reported in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.