Abstract

Dynamic failure behaviors of the extruded Mg -12 Gd -3 Y -0.4 Zr alloy were investigated by means of optical microscope and scanning electron microscope (SEM). The dynamic tensile and compressive tests were carried out at 423K~798K and strain rates of 102~103s-1 using a split Hopkinson pressure bar. Additionally, in order to study the failure characteristic of this alloy at higher strain rates, such as 107s-1, a series of ballistic tests were carried out. The results indicate that the failure mechanisms of both tensile and compressive specimens exhibit an obvious dependence on the temperature. As the testing temperatures increased from 423K to 798K, the fractographs of the tensile specimens varied from quasi-cleavage fracture to intergranular rupture, and the failure modes of the compressive specimens changed from shear cracks to dynamic recrystallization zone. Adiabatic shear bands with an average width 10µm were observed in the post-test magnesium targets penetrated by steel balls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.