Abstract

At present, buckling pin in the bypass of piping as pressure relief valve has been gradually utilized in the low-concentration coal-bed methane (CBM), which bends to release pressure when the main valve fails leading to pipeline blockage. However, current researches mainly focused on the buckling behavior of hydraulic cylinder rod or rod string, and less consideration was given to the operational reliability of buckling pin valves. This paper deduced the calculation formula of the critical failure load based on Euler formula in the buckling pin under buckling load. Besides, three finite element models (FEM) based on Johnson−Cook constitutive model were compared to predict failure strength of buckling pin which were verified by experiment. In addition, the defect sensitivity analysis of the buckling pin under different initial geometric defects rate was carried out. The results showed that a) the experimental value of the critical failure load in the buckling pin was 206.04 N and the bending position was in the middle of the buckling pin; b) the analysis result adopting explicit dynamic method was in best agreement with the experimental results within deviation of 0.24%; and c) the initial geometric defect of buckling pin should be controlled within 1%. This study provides an important reference to predict the critical failure load of the buckling pin valve and achieve safe transportation of low-concentration CBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call