Abstract
A generalisation of the finite dimensional presentation of the Faddeev-Popov perocedure is derived, in an infinite dimensional framework for gauge theories with finite dimensional moduli space using heat-kernel regularised determinants. It is shown that the infinite dimensional Faddeev-Popov determinant is-up to a finite dimensional determinant determined by a choice of a slice-canonically determined by the geometrical data defining the gauge theory, namely a fibre bundleP→P/G with structure groupG and the invariance group of a metric structure given on the total spaceP. The case of (closed) bosonic string theory is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.