Abstract

The endoplasmic reticulum (ER) supports disulfide formation through an essential protein relay involving Ero1p and protein disulfide isomerase (PDI). We find that in addition to having a tightly associated flavin adenine dinucleotide (FAD) moiety, yeast Ero1p is highly responsive to small changes in physiological levels of free FAD. This sensitivity underlies the dependence of oxidative protein folding on cellular FAD levels. FAD is synthesized in the cytosol but can readily enter the ER lumen and promote Ero1p-catalyzed oxidation. Ero1p then uses molecular oxygen as its preferred terminal electron acceptor. Thus Ero1p directly couples disulfide formation to the consumption of molecular oxygen, but its activity is modulated by free lumenal FAD levels, potentially linking disulfide formation to a cell's nutritional or metabolic status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call