Abstract

We consider the inverse problem of electrical impedance tomography in a conducting half-space, given electrostatic measurements on its boundary, i.e., a hyperplane. We first provide a rigorous weak analysis of the corresponding forward problem and then develop a numerical algorithm to solve an associated inverse problem. This inverse problem consists of the reconstruction of certain inclusions within the half-space which have a different conductivity than the background. To solve the inverse problem we employ the so-called factorization method of Kirsch, which so far has only been considered for the impedance tomography problem in bounded domains. Our analysis of the forward problem makes use of a Liouville-type argument which says that a harmonic function in the entire two-dimensional plane must be a constant if some weighted $L^2$-norm of this function is bounded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.